Factorising quadratics

Introduction

On this leaflet we explain the procedure for factorising quadratic expressions such as $x^{2}+5 x+6$.

1. Factorising quadratics

You will find that you are expected to be able to factorise expressions such as $x^{2}+5 x+6$.
First of all note that by removing the brackets from

$$
(x+2)(x+3)
$$

we find

$$
(x+2)(x+3)=x^{2}+2 x+3 x+6=x^{2}+5 x+6
$$

When we factorise $x^{2}+5 x+6$ we are looking for the answer $(x+2)(x+3)$.
It is often convenient to do this by a process of educated guesswork and trial and error.

Example

Factorise $x^{2}+6 x+5$.

Solution

We would like to write $x^{2}+6 x+5$ in the form

$$
(+\quad)(+\quad)
$$

First note that we can achieve the x^{2} term by placing an x in each bracket:

$$
(x+\quad)(x+\quad)
$$

The next place to look is the constant term in $x^{2}+6 x+5$, that is, 5 . By removing the brackets you will see that this is calculated by multiplying the two numbers in the brackets together. We seek two numbers which multiply together to give 5 . Clearly 5 and 1 have this property, although there are others. So

$$
x^{2}+6 x+5=(x+5)(x+1)
$$

At this stage you should always remove the brackets again to check.
The factors of $x^{2}+6 x+5$ are $(x+5)$ and $(x+1)$.

Example

Factorise $x^{2}-6 x+5$.

Solution

Again we try to write the expression in the form

$$
x^{2}-6 x+5=(x+\quad)(x+\quad)
$$

And again we seek two numbers which multiply to give 5 . However this time 5 and 1 will not do, because using these we would obtain a middle term of $+6 x$ as we saw in the last example. Trying -5 and -1 will do the trick.

$$
x^{2}-6 x+5=(x-5)(x-1)
$$

You see that some thought and perhaps a little experimentation is required.

You will need even more thought and care if the coefficient of x^{2}, that is the number in front of the x^{2}, is anything other than 1 . Consider the following example.

Example

Factorise $2 x^{2}+11 x+12$.

Solution

Always start by trying to obtain the correct x^{2} term:
We write

$$
2 x^{2}+11 x+12=(2 x+\quad)(x+\quad)
$$

Then study the constant term 12. It has a number of pairs of factors, for example 3 and 4,6 and 2 and so on. By trial and error you will find that the correct factorisation is

$$
2 x^{2}+11 x+12=(2 x+3)(x+4)
$$

but you will only realise this by removing the brackets again.

Exercises

1. Factorise each of the following:
a) $x^{2}+5 x+4$,
b) $x^{2}-5 x+4, \quad$ c) $x^{2}+3 x-4$,
d) $x^{2}-3 x-4$,
e) $2 x^{2}-13 x-7$,
f) $2 x^{2}+13 x-7$,
g) $3 x^{2}-2 x-1$,
h) $3 x^{2}+2 x-1$,
i) $6 x^{2}+13 x+6$.

Answers

1. a) $(x+1)(x+4)$,
b) $(x-1)(x-4)$,
c) $(x-1)(x+4)$,
d) $(x+1)(x-4)$,
e) $(2 x+1)(x-7)$,
f) $(2 x-1)(x+7)$,
g) $(3 x+1)(x-1)$,
h) $(3 x-1)(x+1)$, i) $(3 x+2)(2 x+3)$.
